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Abstract Animal movements are of great importance in

studying home ranges, migration routes, resource selection,

and social interactions. The Global Positioning System

provides relatively continuous animal tracking over time

and long distances. Nevertheless, the continuous trajectory

of an animal’s movement is usually only observed at dis-

crete time points. Brownian bridge models have been used

to model movement of an animal between two observed

locations within a reasonably short time interval. Assuming

that animals are in perpetual motion, these models ignore

inactivity such as resting or sleeping. Using the latest

developments in applied probability, we propose a mov-

ing–resting process model where an animal is assumed to

alternate between a moving state, during which it moves in

a Brownian motion, and a resting state, during which it

does not move. Theoretical properties of the process are

studied as a first step towards more realistic models for

animal movements. Analytic expressions are derived for

the distribution of one increment and two consecutive

increments, and are validated with simulations. The

induced bridge model conditioning on the starting and end

points is used to compute an animal’s probability of

occurrence in an observation area during the time of

observation, which has wide applications in wildlife

behavior research.

Keywords Alternating renewal process � Brownian

bridge � Home range � Poisson process � Stationary

Introduction

Wildlife biologists have long depended on remote moni-

toring of individual animals to determine movements,

behaviors, and home ranges (Heezen and Tester 1967;

Marshall and Whittington 1969; Hutton et al. 1976; Dunn

and Gipson 1977). Animals move in continuous trajectories

through their environment. Although new technologies

allow for global positioning system (GPS) devices that

sample near-continuous tracks of animal positions, devices

with solar charging batteries are dependent on the weather;

and studies using devices with non-solar batteries for near-

continuous tracks are short in duration (generally less than

one month) because of rapid battery depletion. If year-

round, seasonal movement data are required, this can

become invasive and prohibitively expensive due to the

need to recapture animals and refurbish batteries on ani-

mal-carried devices. The continuous track, if available, can

be used to validate any animal movement model that use

discretely observed data as input. More generally in prac-

tice, the continuous trajectory of animal movements is only

observed at a collection of discrete times. This leads to a

problem of interpolation, or estimation, of an animal’s path

between two consecutive observations, which provide

limits on an animal’s location during the intervening time

when no positions are known.
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The Brownian bridge movement model (BBMM) is an

approach that models the missing movement path between

two sequential positions by a Brownian bridge (Horne

et al. 2007). A Brownian bridge is a stochastic process

derived from a Brownian motion; its distribution is the

conditional distribution of a Brownian motion given the

locations at a beginning time and an ending time. It is a

conditional random walk between successive pairs of

locations, dependent on the time between locations, the

distance between locations, and the Brownian motion

variance which characterizes the animal’s mobility.

Although the BBMM can be appropriate for migratory

behavior (White et al. 2010), it assumes a single animal

movement pattern—the motion is characterized by only a

single mobility parameter. This is unrealistic, especially

when the animal journey is long. An animal can have

different levels of mobility and activity–inactivity periods

influenced by food availability, predation risk, season,

time-of-day, social behavior, and reproductive periods;

some activities cause animals to be diurnal, nocturnal, or

crepuscular (Zschille et al. 2010). To accommodate

behaviorally distinct mobility levels, Benhamou (2011)

expanded the BBMM with different but constant variance

parameters, which characterize mobility, for advection and

diffusion and for different habitats. Kranstauber et al.

(2012) proposed a dynamic extension of the BBMM where

the variance parameter is allowed to change dynamically

along a path, and the change points are estimated with

likelihood comparisons in a moving window (Gurarie et al.

2009).

One aspect that has not been studied is inactivity period,

which would correspond to zero variance in a BBMM.

Animals use inactivity periods for sleeping, ruminating,

vigilance, hibernating, or resting without sleeping. Sleep

time in mammals varies from fewer than 3 h to more than

20 h per day (Siegel 2009). Although some vertebrates

were reported to be in continuous motion (Kavanau 1998),

some mammals spend as much as 75 % of their time

inactive (Wilson et al. 2009; Giné et al. 2012). At fine

temporal scales, a realistic stochastic model should include

inactivity periods. The dynamic BBMM of Kranstauber

et al. (2012) may accommodate inactivity periods to some

extent by a variance parameter approaching zero (none-

theless not equal to zero), but conceptually, it still assumes

perpetual movement, just in different mobility.

With recent advances in applied probability, we propose

an alternative model that allows an animal to stop moving

at a random time and stay still for a random length of

period. Important properties of the process are studied as

the first step towards a more realistic and theoretically

sound model for animal movements for practical usage.

Our model has an underlying alternating renewal process

that governs two phases: moving and resting. Some

animals, like most sharks, move while they rest but we use

‘‘resting’’ simply to mean periods when an animal is not

moving. The alternating renewal process, also known as

the telegraph process or the on–off process, was first

studied by Cane (1959) and Page (1960) in the context of

animal ethology and maintenance of electronic equipment,

respectively. Mathematically this is not a trivial object, and

as a result, this area of research is still quite active. In

particular, in our analysis we used results from work of

Perry et al. (1999), Stadje and Zacks (2004), Zacks (2004),

and Di Crescenzo et al. (2005). For our model, the dura-

tions of moving and resting periods are random. Obtaining

a solvable analytical model requires modeling the time

periods with exponential distributions (Zacks 2004). The

average time spent in moving and resting phases can be

different. During the resting phase, animal location does

not change. During the moving phase, the Brownian

motion model is used, and to build up the foundations for

further generalizations, we assume a single movement

pattern with a single variance parameter. The model is

implemented in an R package smam (Yan and Pozdnyakov

2013) for statistical modeling of animal movement.

This article is organized as follows. The moving–resting

process and the alternating renewal process are presented

in the next section along with their intuitive properties. The

bridge model resulting from a moving–resting process is

then derived based on the marginal distributions of one-

time increment and bivariate two-consecutive-time incre-

ments of the process. The next section provides an example

of application of the model in animal movements to

occupation time distribution with two observed ending

points of a time interval. Parameter estimation is then

presented with two cases depending on whether or not the

moving–resting state is observed. The model is illustrated

with data from a female mountain lion (Puma concolor). A

discussion on limitations and extensions concludes the last

section.

Moving–resting process

Our moving–resting model modifies the BBMM by adding

periods of inactivity. The active periods and inactive

periods are modeled by an alternating renewal process with

exponentially distributed holding times. Let {Mi}i C 1 be

independent and identically distributed (i.i.d.) random

variables with exponential distribution with mean 1/km and

{Ri}i C 1 be i.i.d. random variables with exponential dis-

tribution with mean 1/kr. Assume that {Mi}i C 1 and

{Ri}i C 1 are independent. Consider an alternating renewal

process that with probability pm, 0 B pm B 1 starts with a

moving cycle (i.e., we have M1;R1;M2;R2; . . .) and with

probability pr = 1 - pm starts with resting cycle (i.e., we
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have R1;M1;R2;M2; . . .). With the exponentially distrib-

uted renewal times, the marginal probability that the pro-

cess is in the moving phase and that the process is in the

resting phase are, respectively,

pm ¼
kr

km þ kr

and pr ¼
km

km þ kr

:

Let S(t), t C 0 be the state process; that is, S(t) = 1 if

the alternating renewal process is in a moving cycle and

S(t) = 0 if the process is in a resting cycle at time t. Let

X(t) be a d-dimensional moving–resting process indexed by

time t [ 0. Conditioning on the state of the underlying

renewal process, S(t), the moving–resting process X(t) is

defined by the stochastic differential equation

dXðtÞ ¼ rdBðtÞ SðtÞ ¼ 1;
0 SðtÞ ¼ 0;

�
ð1Þ

where r is a volatility parameter, and B(t) is the standard

Brownian motion. The process is characterized by three

parameters (r, km, kr).

Simulation from the moving–resting process model after

it is already stationary is straightforward with the following

algorithm:

1. With probability pm and pr, respectively, start from

moving and resting phase at t = 0.

2. Generate the alternating renewal process with expo-

nential distributions with rate km and kr.

3. Remove the resting periods and fill the moving periods

with a Brownian motion with volatility r.

4. Fill each resting period with its initial location.

Figure 1 shows a realization from a moving–resting

process in the one-dimensional case (d = 1) with

(r, km, kr) = (1, 1, 1) starting from a moving state

(S(0) = 1). If we let this process evolve for a very long

time, the probability that it is in the moving phase and that

in the resting phase at a random time point will be pm = 1/

2 and pr = 1/2, respectively.

Let M(t) and R(t), t [ 0 be the total time in interval (0, t]

spent in the moving cycles and in the resting cycles,

respectively; consequently, R(t) = t - M(t). For a given

initial state S(0), the most important quantity in analyzing

the alternating process is the joint distributions of the two

pairs (M(t), S(t)) and (R(t), S(t)). First, it is known that in

the case when durations of alternating phases are described

by exponential distributions, closed-form expressions for

their densities are available (e.g., Zacks 2004, p. 500). The

second important observation is the Markov property of the

location/phase state process; that is, because of the me-

moryless property of the exponential distribution and the

Markov property of the Brownian motion, the joint process

{X(t), S(t): t C 0} is a Markov process with stationary

increments in X(t). Combining these two facts together, an

explicit formula for the joint density Pr½XðsÞ 2 dx;XðtÞ �
XðsÞ 2 dy�; 0\s\t; can be derived as long as we have the

joint ‘‘densities’’ for X(t) and S(t); see Section ‘‘Bridge

model from moving–resting process’’ for details.

Mathematically, Brownian motion is a special case of

the moving–resting process when there is no resting

phase—kr !1: Our model has some features that are

impossible to accommodate within the framework of the

Brownian motion. One is, of course, staying in one location

during a resting phase. There are other, less apparent, but

interesting characteristics. For example, consider the

2-dimensional case with coordinates (x, y). For a moving–

resting process, the observed x- and y-coordinates are not

independent, as opposed to the independence in a Brown-

ian motion. The x-movements and y-movements are

inherently synchronized so that they have the same state

process at all time points. Consequently, the shared resting

phases introduces dependence between x- and y-locations.

Indeed, if we have an exactly zero x-movements, then it

means that an animal rested during this time period, and, as

a result, the corresponding y-movements will be zero too.

In spite of the added complexity, the model is tractable.

Recent theoretical findings on alternating renewal pro-

cesses (Perry et al. 1999; Stadje and Zacks 2004; Zacks

2004; Di Crescenzo et al. 2005)—more specifically,

M(t) and R(t)—facilitate closed-form formulas for the

moving–resting process; see next section for more details.

Define

Pm �½ � ¼ Pr �jSð0Þ ¼ 1½ �; and Pr �½ � ¼ Pr �jSð0Þ ¼ 0½ �:

Then, for 0 \ w \ t, we introduce the following

(defective) densities

pmmðw; tÞdw ¼ Pm MðtÞ 2 dw; SðtÞ ¼ 1½ �;
pmrðw; tÞdw ¼ Pm MðtÞ 2 dw; SðtÞ ¼ 0½ �;
prmðw; tÞdw ¼ Pr RðtÞ 2 dw; SðtÞ ¼ 1½ �;
prrðw; tÞdw ¼ Pr RðtÞ 2 dw; SðtÞ ¼ 0½ �:

0 2 4 6 8 10
−1.0

−0.5

0.0

0.5

t

X
(t

)

Fig. 1 A realization from a one-dimensional (d = 1) moving–resting

process with (r, km, kr) = (1, 1, 1) over t 2 ð0; 10Þ: The straight line

segments represent the time period in which the process is inactive
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According to Zacks (2004, p.500), we have that

pmmðw;tÞ¼e�kmw�krðt�wÞ
X1
n¼1

kn
mkn

r

n!ðn�1Þ!w
nðt�wÞn�1;

pmrðw;tÞ¼kme�kmw�krðt�wÞþkm

X1
n¼1

pðn;kmwÞpðn;krðt�wÞÞ;

where p(n, l) = e-lln/n! is the probability mass function

of a Poisson variable with mean l evaluated at

n. Respectively, we have that

prrðw; tÞ¼ e�krw�kmðt�wÞ
X1
n¼1

kn
r k

n
m

n!ðn�1Þ!w
nðt�wÞn�1;

prmðw; tÞ¼ kre
�krw�kmðt�wÞ þkr

X1
n¼1

pðn;krwÞpðn;kmðt�wÞÞ:

It is easy to see that M(t) and R(t) have atoms or point

masses at w = t in the following sense:

Pm MðtÞ ¼ t½ � ¼ e�kmt and Pr RðtÞ ¼ t½ � ¼ e�kr t:

These formulas avoid the demanding task of computing

the distribution of the time spent in the moving or resting

phase via large scale simulations. The series in the for-

mulas can be evaluated conveniently using the modified

Bessel function of the first kind

Iðz; aÞ ¼
X1
m¼0

z
2

� �2mþa

m!Cðmþ aþ 1Þ :

For example, we have pmmðw; tÞ ¼ e�krw�kmðt�wÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmkrw=ðt � wÞ

p
Iðz; 1Þ and pmrðw; tÞ ¼ kme�krw�kmðt�wÞ

Iðz; 0Þ; where z ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmkrwðt � wÞ

p
: Similar forms can be

found for prr and prm.

Bridge model from moving–resting process

Time spent in moving or resting phase

The time an animal spent in moving and/or resting phases

determines the utilization distribution for a given period of

time. This feature is completely controlled by the alter-

nating renewal process with parameters (km, kr). Assuming

that the process X(t) started from t ¼ �1 and that it has

already reached stationarity by time t = 0. Therefore, the

marginal probabilities of S(0) = 1 and S(0) = 0 are,

respectively, pm and pr. Given a time interval (0, t), the

time an animal spent in the moving phase during the

interval has a (defective) density

Pr½MðtÞ 2 dw� ¼ pm½pmmðw; tÞdwþ pmrðw; tÞdw�
þ pr½prrðt � w; tÞdðt � wÞ þ prmðt � w; tÞdðt � wÞ�

for w 2 ð0; tÞ and an atom at w = t. Note that this proba-

bility is the same as Pr½RðtÞ 2 dðt � wÞ�: For the BBMM,

Pr½MðtÞ ¼ t� ¼ 1 and Pr½RðtÞ ¼ 0� ¼ 1: These probability

characteristics describe the difference between the mov-

ing–resting process and the BBMM. In applications to

home range analysis, they lead to a tighter possible range

than what is implied by a BBMM with the same volatility

parameter r.

Figure 2 shows the density of the time spent moving by

time t, M(t), with t = 10, km = 1 and kr 2 f1=2; 1; 2g:
Note that the densities do not integrate to one because of

the atom at t and 0, respectively, when S(0) = 1 and

S(0) = 0. When the starting state is moving (S(0) = 1),

the weight of the atom point t is expð�kmtÞ regardless of

kr. On the other hand, when the starting state is resting

(S(0) = 0), the weight of the atom point 0 is expð�krtÞ;
the smaller kr, the longer the resting periods on average,

and hence the more weight at 0 for the time in moving. In

the extreme case kr !1; the moving–resting process

would become Brownian motion, in which case, M(t) is

singular at t with weight one for both S(0) = 1 and

S(0) = 0. It is also interesting to note that the density with

the same kr has more concentration on lower duration

values for S(0) = 0 than with S(1) = 1, because starting

from resting would lead to less time for moving on

average.

Marginal distribution of one increment

Without loss of generality, we assume X(0) = 0. Our first

goal is to find the marginal distribution of X(t), t [ 0.

This is the distribution of the animal’s location at time

t relative to the starting location at time 0, or increment

since time 0. The density of this distribution can be

derived if we have the joint distribution of X(t) and S(t),

t [ 0. Note that, if the resting phases were removed, then

the remaining process is exactly a Brownian motion. For

example, for 0 \ w \ t,

Pm½XðtÞ 2 dx; SðtÞ ¼ 1;MðtÞ 2 dw�
¼ /ðx; r2wÞpmmðw; tÞdxdw;

where /ð�; aÞ is the density function of a normal variable

with mean zero and variance a. Note that the normal

density / can be univariate, bivariate, or of higher

dimension, the same as the dimension of the Brownian

motion; the formulas in the sequel remain unchanged.

The joint distribution of XðtÞ; SðtÞð Þ starting from

S(0) = 1 can be obtained by integrating w out. Other

scenarios can be similarly handled. For ease of notation,

let
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hmmðx; tÞ ¼ e�kmt/ðx; r2tÞ þ
Z t

0

/ðx; r2wÞpmmðw; tÞdw;

hmrðx; tÞ ¼
Z t

0

/ðx; r2wÞpmrðw; tÞdw;

hrrðx; tÞ ¼
Z t

0

/ x; r2ðt � wÞ
� �

prrðw; tÞdw;

hrmðx; tÞ ¼
Z t

0

/ x; r2ðt � wÞ
� �

prmðw; tÞdw:

Then we have

Pm XðtÞ 2 dx; SðtÞ ¼ 1½ � ¼ hmmðx; tÞdx;

Pm XðtÞ 2 dx; SðtÞ ¼ 0½ � ¼ hmrðx; tÞdx;

Pr XðtÞ 2 dx; SðtÞ ¼ 0½ � ¼ hrrðx; tÞdxþ e�kr td0ðxÞ;
Pr XðtÞ 2 dx; SðtÞ ¼ 1½ � ¼ hrmðx; tÞdx;

where d0(x) is the delta function with an atom at 0. Note

that the extra part in Pr XðtÞ 2 dx; SðtÞ ¼ 0½ �; e�kr td0ðxÞ; is

the probability that the whole time period (0, t] is in a

resting phase. The extra part in hmmðx; tÞ; e�kmt/ðx; r2tÞ;
comes from the possibility that the whole (0,t] interval

belongs to a single moving phase.

The marginal density of X(t) is, for any x = 0,

Pr XðtÞ 2 dx½ �=dx ¼ pmhmðx; tÞ þ prhrðx; tÞ; ð2Þ

where hm(x, t) = hmm(x, t) ? hmr(x, t), and hr(x, t) =

hrm(x, t) ? hrr(x, t).

The marginal distribution has a point mass at x = 0 with

probability

Pr½XðtÞ ¼ 0� ¼ pre
�kr td0ðxÞ:

This can only happen when the animal starts from the

resting phase and stays in it during the whole period (0,t]. It

is easy to verify that
R1
�1 hmðx; tÞdx ¼ 1 andR1

�1 hrðx; tÞdxþ e�kr t ¼ 1:

The marginal distribution of X(t) of the moving–resting

process is expected to have a thinner tail than that of

Brownian motion, and to have an atom at zero. These facts

lead to tighter home range in applications. The probability

of the atom at zero depends on the rate of the exponential

distributed duration in the resting phase. The smaller the

rate, the bigger the probability.

For illustration, we plot the marginal density of X(t) for

t = 10 with r ¼ 1; km ¼ 1; kr 2 f1=2; 1; 2g; and Sð0Þ 2
f1; 0g in Fig. 3. As a reference, we also plotted the density

of X(10) for the Brownian motion with r = 1, which

corresponds to the moving–resting process with kr ¼ 1:
Clearly, the marginal densities of the moving–resting

process have thinner tails than that of the Brownian

motion. The smaller kr, the thinner the tails. The densities

with the same kr have more concentration around zero for

S(0) = 0 than those for S(0) = 1, which is expected

because starting with resting means less movement. For

S(0) = 0, the densities have an atom at zero with weight

expð�krtÞ; which would show more obviously for smaller

t. Further, note that the densities for S(0) = 0 might not be

differentiable at zero—the peak is obvious for kr = 1/2. As

a result, the density of X(t) after S(0) is marginalized out

might not be differentiable at zero either.

Joint distribution of two consecutive increments

For 0 \ u \ t and �1\x; y\1; consider the joint dis-

tribution of the increment at time u and at time

t, {X(u), X(t) - X(u)}. We have

0 2 4 6 8 10

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M (10)

S (0) = 1

r = 1/2
r = 1
r = 2

0 2 4 6 8 10

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M (10)

S (0) = 0

D
en

si
ty

Fig. 2 Density of M(10), the time spent moving for a moving–resting process with km = 1 and kr 2 f1=2; 1; 2g during time interval (0, 10). Left

starting from moving (S(0) = 1). Right starting from resting (S(0) = 0)

Popul Ecol (2014) 56:401–415 405

123



Pr XðuÞ 2 dx;XðtÞ � XðuÞ 2 dy½ �
¼ pmPm XðuÞ 2 dx;XðtÞ � XðuÞ 2 dy½ �
þ prPr XðuÞ 2 dx;XðtÞ � XðuÞ 2 dy½ �:

Because of the memoryless property of the exponential

distribution and Markov property of the Brownian motion,

the joint process {X(t), S(t)}t C 0 is a Markov process.

Therefore, for any x = 0 and y = 0, we have

Pm XðuÞ 2 dx;XðtÞ � XðuÞ 2 dy½ �
¼ Pm Xðt � uÞ 2 dy½ �Pm XðuÞ 2 dx; SðuÞ ¼ 1½ �
þ Pr Xðt � uÞ 2 dy½ �Pm XðuÞ 2 dx; SðuÞ ¼ 0½ �:

In the same fashion, we get that

Pr XðuÞ 2 dx;XðtÞ � XðuÞ 2 dy½ �
¼ Pm Xðt � uÞ 2 dy½ �Pr XðuÞ 2 dx; SðuÞ ¼ 1½ �
þ Pr Xðt � uÞ 2 dy½ �Pr XðuÞ 2 dx; SðuÞ ¼ 0½ �:

All the terms involved are already available from the last

subsection.

Note that this joint distribution has singularity at point

(x, y) = (0, 0) and on lines x = 0 and y = 0. The formulas

above are still valid with our notation. Point (0, 0) means

that the process started from resting and stayed in the

resting phase during the whole time interval (0, t). Line

x = 0 means that the process started from resting, stayed in

resting until at least time u, and moved during (u, t). Line

y = 0 means that the process moved during (0, u), was in

the resting phase at time u, and stayed in the resting phase

during (u, t).

Continuing with our illustration, consider the joint

distribution of X(u) and X(t) - X(u) with u = 5 and

t = 10 in the one-dimensional case with r ¼ 1; km ¼
1; kr 2 f1=2; 1; 2g; and Sð0Þ 2 f1; 0g: We plot the

contours of the nonsingular part of the joint density under

all scenarios in Fig. 4. To validate the correctness of the

formulas, we simulated 10,000 replicates of the process

for each scenario, and estimated the nonsingular part of

the joint density of XðuÞ;XðtÞ � XðuÞð Þ by bivariate ker-

nel smoothing. The contours of the estimated kernel

densities matched those from our formulas closely (the

overlaid plots not shown). It is of interest to note that, at

x = 0 and y = 0, the contours appear to have angles

instead of being smooth. This is a result of the resting

period, similar to the nonsmooth curvature for S(0) = 0 in

Fig. 3.

The time durations of the two increments are both 5.

When S(0) = 1 (starting from moving), the range of X(5)

(horizontal) is wider than the range of X(10) - X(5) (ver-

tical) for all three kr values because, at t = 5, the process

might be in a resting phase—S(5) = 0. When S(0) = 0

(starting from resting), the opposite is true. The difference

decreases as kr increases; when kr !1; the process

reduces to a Brownian motion and the two increments have

identical distributions.

Bridge distribution

The probability distribution conditioned on starting and

ending points is important in applications such as home

range analysis (Horne et al. 2007) and analysis of animal

movements (e.g., Sawyer et al. 2009). Given X(0) = 0 and

X(t) = x, we seek the conditional distribution of X(u) for

0 \ u \ t that characterizes the bridge model with fixed

starting and ending points for the moving–resting process.

It is clear that P(X(u) = x | X(t) = 0) = d0(x), because

event X(t) = 0 can only occur with a positive probability if

the whole time period (0, t] is a resting period.
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Next, assume that y = 0 and x = 0, x = y. Then we

do not have any singularities:

Pr XðuÞ 2 dxjXðtÞ ¼ yð Þ ¼ PrðXðuÞ 2 dx;XðtÞ 2 dyÞ
PrðXðtÞ 2 dyÞ ; ð3Þ

where

PrðXðtÞ 2 dyÞ
dy

¼ pmhmðy; tÞ þ prhrðy; tÞ

and

PrðXðuÞ 2 dx;XðtÞ 2 dyÞ
dxdy

¼ pm½hmðy� x; t� uÞhmmðx;uÞ þ hrðy� x; t� uÞhmrðx;uÞ�
þ pr½hmðy� x; t� uÞhrmðx;uÞ þ hrðy� x; t� uÞhrrðx;uÞ�:

Now, let y = 0 but x = 0. Then at 0 we have an atom

with the following weight:

PrðXðuÞ ¼ 0jXðtÞ ¼ yÞ

¼ PrðXðuÞ ¼ 0;XðtÞ 2 dyÞ
PrðXðtÞ 2 dyÞ ¼ prPrðXðuÞ ¼ 0;XðtÞ 2 dyÞ

PrðXðtÞ 2 dyÞ

¼ pre
�kruhrðy; t � uÞ

pmhmðy; tÞ þ prhrðy; tÞ
:

By symmetry in the direction of the process, for

x = y and y = 0, we have

PrðXðuÞ ¼ yjXðtÞ ¼ yÞ ¼ pre
�krðt�uÞhrðy; uÞ

pmhmðy; tÞ þ prhrðy; tÞ
;

assuming that pm and pr are at the stationary values. This

symmetry is obvious, noticing that

pmhmrðy; uÞ ¼ prhrmðy; uÞ;

which leads to

prhrrðy; uÞ þ pmhmrðy; uÞ ¼ prhrmðy; uÞ þ prhrrðy; uÞ:

Figure 5 shows the conditional densities of a one-

dimensional moving–resting bridge X(u) with

r = 1, km = 1, and kr 2 f1=2; 1; 2;1g; at time u 2
f2; 5; 8g given X(10) = 9. The case of kr ¼ 1 corresponds

to a Brownian bridge. Similar to a Brownian bridge, the

center of the conditional density of the moving–resting

bridge moves towards the ending point X(10) = 9 as

u increases from 2 to 8. Nevertheless, the conditional

density of moving–resting bridges with kr\1 has nonzero

probability masses at the starting point and the ending

point. For smaller kr values such as 1/2 and 1, it is obvious

that the densities for u 2 f2; 8g are not differentiable at 0

and 9, the starting and ending points, respectively. The

mass probabilities decrease as kr increases, which increases

the area under the non-degenerate density curve. Eventu-

ally, when the mass probability is closer to being exhausted

with larger kr values, the conditional densities will have

heavier tails and resemble more and more those from the

Brownian bridge.

Sampling from the bridge

Sampling from the bridge X(u) for 0 \ u \ t given

X(0) = 0 and X(t) = x can be done by exploiting the

connection between a moving–resting process and a

Brownian motion. We propose the following algorithm:

1. With probability pm and pr, respectively, start from

moving and resting phase at t = 0.

2. Generate the alternating renewal process with expo-

nential distributions with rate km and kr.

3. Remove the resting periods and fill the moving periods

with a Brownian bridge with volatility r.

4. Fill each resting period with its initial location.

The only difference between this algorithm and the

algorithm of sampling from a moving–resting process is

that the generation of Brownian motion is replaced by

generation of Brownian bridge.

This algorithm can be used to generate possible paths

given two discretely observed locations at two time points.

Application to animal movements

For a given parameter set (r, km, kr) and the locations of

the beginning and the ending point in time interval

(0, t], the distribution of the occupation time at any loca-

tion during this interval can be derived from the bridge

model. To get the occupation time density at x = 0, we

need to take the integral of PrðXðuÞ 2 dxjXðtÞ ¼ yÞ=dx

with respect to u from 0 to t and then divide the result by t,

1

t

Z t

0

Pr XðuÞ 2 dxjXðtÞ ¼ yð Þdu=dx:

At x = 0 (and x = y) we have an atom with the following

weight

1

t

Z t

0

Pr XðuÞ ¼ 0jXðtÞ ¼ yð Þdu:

For illustration, consider a two-dimensional bridge

model from a moving–resting process with parameters

r = 1.0, km = 1, and kr 2 f1=10; 10g: Suppose that at

the beginning t = 0 and at time t = 10, an animal is known

to be at location x1ð0Þ; x2ð0Þð Þ ¼ ð0; 0Þ and x1ðtÞ; x2ðtÞð Þ ¼
ð9; 3Þ; respectively. From the formula above, the occupa-

tion distribution has a mass of 0.1123 at each of the two

end points for kr = 1/10. This mass is 0.0008 for kr = 10;
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the small mass implies that the occupation distribution is

almost the same as that from a BBMM.

The formulas also facilitate calculation of the nonsin-

gular occupation time density for each location (x1, x2) on a

grid. Combined with the mass at two end points, such

calculation can provide contours of the occupation time

distribution. Figure 6 shows the contours of the density of

the fraction of time spent at each point in a grid region. The

three contours in each plot correspond to, respectively, the

50, 80, and 90 % of the occupation time distribution con-

structed with the highest density approach. Clearly, the

density with kr = 1/10 is much tighter than that with

k = 10, which approximates closely the density from k ¼
1 as in a BBMM of Horne et al. (2007) without mea-

surement error. The difference is explained by the point

mass of 0.1123 at each of the two endpoints when kr = 1/

10. Even though the shapes of the contours look similar to

those of Horne et al. (2007), there are two important dif-

ferences. First, our density in the plot does not integrate to

one because there are positive masses at (0, 0) and (9, 3).

Second, our density is tighter around the line segment that

connects the two end points because the animal can spend

time resting. The magnitude of the difference is controlled

by how much time the animal spent in the resting phase,

which is in turn controlled jointly by (km, kr). The ratio km /

kr determines the ratio of the time duration spent in the

moving and resting phases on average. The magnitudes of

km and kr determine how frequently the animal alternates

between the two phases.

For comparison, Fig. 6 also shows the contours of the

occupation time density for a BBMM with r = 0.5. This is

of interest because, when fitted to the same data, the esti-

mate of r from a BBMM will be smaller than that from a

moving–resting process. In our real data analysis example,

the ratio of the estimates is close to 0.5. The contours are

much tighter than those from the moving–resting process

with km / kr = 10, which is very close to the ratio of the

estimates from the real data (10.7). This can be explained

by the two directions of the effects of parameter changes:

increasing kr makes the utilization distribution wider, but

decreasing r makes it tighter. The effect of the first force

has a limit; there is little change if kr is greater than 10. The

Fig. 5 Conditional densities of a one dimensional moving–resting process with r = 1, km = 1, and kr 2 f1=2; 1; 2;1g; at time u 2 f2; 5; 8g
given X(10) = 9
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effect of the second force can make the utilization distri-

bution much tighter as r ? 0. The extra parameters km and

kr do provide more flexible shapes of utilization

distributions.

Parameter estimation

Parameter estimation based on discretely observed animal

movement data is the first step toward applying the model

in practice. It is especially useful for gaining knowledge

about cryptic species whose natural history is still

unknown. Let XðtÞ; t ¼ t0; t1; . . .; tn; be the observed loca-

tions and SðtÞ; t ¼ t0; t1; . . .; tn; be the states of the under-

lying alternating renewal process for moving and resting.

Let h = (km, kr, r) be the parameter vector. Depending on

whether S(t) is observed or not, parameter estimation can

be straightforward or challenging.

S(t) is observed

If the state process S(t) is somehow observed, for example

through accelerometers (e.g., Wilson et al. 2006), then the

joint process XðtÞ; SðtÞð Þ is Markovian, and the full likeli-

hood is available in closed-form. With X(0) = 0, the

transition density of XðtÞ; SðtÞð Þ is

f xðtÞ; sðtÞjsð0Þ; hð Þ

¼

hmm xðtÞ; tð Þ sð0Þ ¼ 1; sðtÞ ¼ 1;

hmr xðtÞ; tð Þ sð0Þ ¼ 1; sðtÞ ¼ 0;

hrm xðtÞ; tð Þ sð0Þ ¼ 0; sðtÞ ¼ 1;

hrr xðtÞ; tð Þ þ e�kr td0ðxÞ sð0Þ ¼ 0; sðtÞ ¼ 0;

8>>><
>>>:

where the h’s are defined in Section ‘‘Bridge model

from moving–resting process’’. Note that h enters all

the h’s. The likelihood function of the observed data is

then

LðhÞ ¼
Yn

i¼1

f XðtiÞ � Xðti�1Þ; SðtiÞjSðti�1Þ; hð Þ

This likelihood can be maximized with respect to h to give

the maximum likelihood estimator (MLE) ĥn: The usual

properties of ĥn such as consistency, asymptotic normality,

and asymptotic efficiency hold under regularity conditions.

The variance of ĥn can be estimated from the inverse of the

Fisher information matrix.

Modern animal tags often include an accelerometer that

gives access to information about the activity of animal

(Gleiss et al. 2010; Brown et al. 2012; Nathan et al. 2012).

If such information does help to determine the moving–

resting state S(t) at each observed location, then it can be

used in our model and estimation through transition density

f. Note that there is no place to use it in the BBMM.

S(t) is not observed

In practice, it is more likely that S(t) is not observed. Then,

the observed process X(t) itself is not Markovian and the

full likelihood must be constructed from the joint distri-

bution of XðtÞ; t ¼ t0; t1; . . .; tn; which is intractable. One

could treat the process SðtÞ; t ¼ t0; t1; . . .; tn; as missing

values, and estimate the parameters in a computationally

intensive Bayesian approach using general sampling-based

inference with Markov chain Monte Carlo (e.g., Robert and

Casella 2004). A simpler alternative that does not require

full likelihood is the composite likelihood approach

(Lindsay 1988).
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Fig. 6 Contours of the occupation time density in time interval

(0, 10), for a two-dimensional bridge model from a moving resting

process with parameters r = 1.0, km = 1, and kr 2 f1=10; 10g (top

and center), given that x1ð0Þ; x2ð0Þð Þ ¼ ð0; 0Þ and x1ð10Þ; x2ð10Þð Þ ¼
ð9; 3Þ: For comparison, the same density from Brownian motion with

r = 0.5 is also shown (bottom). The three contours in each plot

correspond to, respectively, the 50, 80, and 90 % of the occupation

time distribution constructed with the highest density approach
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The composite likelihood approach constructs an

objective function by putting pieces of tractable likelihood

information together. The objective function, known as

composite likelihood, is maximized to give maximum

composite likelihood estimator (MCLE) as if it were a

likelihood. Under mild conditions, correct specification of

the pieces in the composite likelihood leads to consistency

and asymptotic normality of the MCLE. It has wide appli-

cations where the full joint distribution is unavailable or

intractable but lower-order marginal or conditional distri-

butions are known (e.g., Varin 2008; Varin et al. 2011). In

our setting, the marginal distribution of one increment, the

bivariate joint distribution of two consecutive increments,

and the conditional distribution of the bridge given the two

end points can all be used to construct different versions of

composite likelihood. For illustration, let p(x, t | h) be the

marginal density/mass function of one increment at time

t for a process starting at X(0) = 0, as derived in Section

‘‘Bridge model from moving–resting process’’. A compos-

ite likelihood based on p can be constructed as

CLðhÞ ¼
Yn

i¼1

p XðtiÞ � Xðti�1Þ; ti � ti�1jh½ �:

Estimation based on this composite likelihood is imple-

mented in an R package smam (Yan and Pozdnyakov

2013). Similar composite likelihoods can be constructed

based on the two-increment distribution and the bridge

distribution. Note that the pieces in the product are not

independent, which is the difference between a composite

likelihood and a true likelihood. The variance of the

resulting MCLE needs to be estimated with sandwich

variance estimators, which is not a trivial task. The finite

sample properties of the MCLE from different composite

likelihoods also merit further investigation.

To check the performance of the composite likelihood

based on p, we conducted a simulation study. Sample paths

were generated from a moving–resting process with km ¼
1=ð8 � 60Þ ¼ 0:00208; kr ¼ 1=ð4 � 60Þ ¼ 0:00417; and

r = 25. With time unit minute, these parameters means

mean duration of 8 h in the moving stage and 4 h in the

resting stage. The sampling frequency is one observation

every 20 min. We generated 500 datasets, each with 1000

observations. The parameters were estimated with the

composite likelihood. The averages of the estimates

0.00216, 0.00412, and 25.03, with empirical standard

deviation 0.00187, 0.00326, and 0.626, respectively, sug-

gesting that the MCLE recovers the true parameter values.

An example

A mature female mountain lion in the Gros Ventre Mountain

Range near Jackson, Wyoming was tracked with a GPS collar

from 2009 to 2012. The collar was programmed to collect a fix

every 8 h but the sampling times were irregular: the sampling

intervals had a standard deviation of 6.45 h, ranging from 0.5

to 120 h. There were a total of 3917 observations. Figure 7

shows the easting and northing offsets (meters, UTM) of the

lioness’s track from her starting position. The lioness’s track is

similar to the simulated track in Fig. 1, having numerous

‘‘plateaus’’ where the lioness remained very close to one place

for several days at a time. For further illustration, we zoomed

into the first quarter of 2010 and plotted the distance moved

since the last sampling time for each time in the bottom panel

of Fig. 7. Most observation times were separated by 8 h. It is

clear that at multiple time points, the distance moved since the

last sampling time was very close to zero. Field personnel

investigated some of these sites and determined them to be

places where the lioness consumed a prey item. The lioness

typically remained within 250 m of the consumption site

during which she exhibited a sallying movement pattern: she

repeatedly moved out from the kill and then back, going in

different directions. These sallies covered short distances

compared to the offsets when the lioness transitioned between

consumption sites, so we consider these plateaus to be mod-

eled by resting periods.

We fitted the moving–resting process model to the data

using the composite likelihood approach. The parameter

estimates are k̂m ¼ 3:514; k̂r ¼ 0:328; and r̂ ¼ 977:6 m/h.

For comparison, we also fitted a Brownian motion model

and the estimated parameter is r̂ ¼ 447:9 m/h. The results

suggest that the cat spent much more time resting than

moving, with a ratio of 10.7 resting to moving. This is not

completely surprising because adult mountain lions spend a

majority of their time resting (Beier et al. 1995; Pierce and

Bleich 2003; Laundré 2005). When she moved, she moved

much faster than what the Brownian motion model sug-

gested, as seen from the difference in r̂:
Figure 8 shows the contours of the occupation time

density in a 8-h time interval for the female mountain lion

estimated from the moving–resting process (left) and the

Brownian motion (right), given the locations of two end

points (0, 0) and (1.0, 0.8) in km. Although the utilization

distributions from the two models are similar in their 95 %

contours, they are very different in contours at other levels.

The moving–resting model allows the lioness to stay at the

two end points with a quite high probability (0.48) and also

cover a similar distance to that from the Brownian motion

by doubling the volatility parameter (speed).

Discussion

Compared to the BBMM (Horne et al. 2007), the moving–

resting process allows the possibility for animals to stay
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Ventre Mountain Range near

Jackson, Wyoming tracked with
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still, providing a more realistic description of animal

behavior. For any given discretely observed animal

movement data, three parameters need to be estimated,

where the Brownian motion variance measures the mobil-

ity of animals in the moving phase, and the two rate

parameters of the exponential duration measure the

switching between the moving phase and the resting phase.

The tractability of the model is facilitated by the expo-

nential distribution assumption of the durations of moving

and resting phases, which brings in the memoryless prop-

erty. The singularity in the distribution does not present

any problem with the likelihood approach. Similar to the

BBMM, the moving–resting process still assumes that

there is a single state of animal behavior: the distributions

of time spent moving and resting remain the same over

time, and if in moving phase, the movement behavior

remains the same. A dynamic extension similar to Kran-

stauber et al. (2012) can be developed to allow changes in

the moving/resting parameters in addition to changes in the

Brownian motion variance parameter. This might be

helpful when the animal behaviors are cycling.

In home range analysis, our model produces tractable

space occupancy probability estimates per pair of position

samples. The union of these individual distributions con-

stitutes a rigorous utilization distribution and home range

estimate. The utilization distribution determined by our

model is spatially explicit but, nonetheless, insensitive to

terrain. For kernel-based approaches, one can simply

truncate the areas outside of permitted boundaries from the

utilization distribution (Christ et al. 2008; Johnson et al.

2008; Benhamou and Cornélis 2010). For movement-based

models such as ours or BBMM, it might be reasonable to

assume reflective boundaries, in which case, the Brownian

motion will be replaced with reflected Brownian motion,

and the resulting bridge distribution will be much more

complicated depending on the shape of the boundaries.

Discrete approximation might be possible (Benhamou

2011). When applied at spatial scales large enough that

these exclusions are trivial, we believe the distributions are

realistic. Incorporating exclusion areas might be possible

with a simulation-based method currently under

investigation.

Parameter estimation is simple if S(t) is observed.

Resting might be deduced from programming a collar to

collect very frequent GPS positions (perhaps one each

second for a minute) every so often, or from accelerome-

ters in the collar, but both approaches need extra consid-

eration. The expected user-range error for a timing code

based GPS position is on the order of meters (Lawrence-

Apfel et al. 2012), so deducing velocity from many fixes

very close together in time and space would likely be so

dominated by noise to be unhelpful. GPS collars with

accelerometers capture brief acceleration snapshots

(Markham 2008), which might help to determine the type

of no-movement. However, some species [e.g., elk (Cervus

elaphus)] are adept at keeping the head still while moving

and other species frequently raise their head to scan for

predators while grazing. Cats might awaken suddenly to

groom vigorously for a few moments and then return to

sleep. Many behaviors might confound accelerometer data,

so their utilization is also unclear. For most practical usage,

it is worth further developing estimation methodology that

does not use the moving/resting state as input, and studying

the properties of the estimator.

An important problem in GPS tracking applications is,

what is an optimal sampling interval? GPS wildlife-track-

ing devices are powered by batteries, which have finite

duration capacity dependent upon how frequently the unit

is scheduled to acquire a position, and these devices have

data stores that eventually become full. Therefore, there is

a trade-off between position density (in time) and deploy-

ment duration. Modern technology allows the possibility of

collecting an essentially continuous set of positions over

time, which would give a complete picture of how an

animal occupied space—but it may still be too costly for

long-term tracking. Deploying tracking collars on wild

animals is very expensive. Collars need to be deployed

strategically to maximize the information returned on the

investment. Researchers usually cannot afford to collect

positions with very high frequency; studies last years, not

hours. Yet, temporal gaps in recorded positions decrease

knowledge of an animal’s spatial range. Therefore, rigor-

ous and realistic stochastic utilization distribution models

are the best way to achieve a compromise between sam-

pling frequency and study duration to estimate an animal’s

location between samples. The models presented here

incorporate (spatially) stationary periods across a broad

range of temporal scales but, interestingly, less so at the

finest scales. In general, the method is applicable to mac-

roscopic vertebrates, meaning we believe it is relevant to

any vertebrate whose home range is much larger than the

expected error in a GPS position (tens of meters), which

might exclude certain species such as wood frogs (Litho-

bates sylvaticus) (Rittenhouse and Semlitsch 2009) for

example. We note that, although our discussion focused on

GPS, it is actually unimportant what positioning technol-

ogy is used. The method can be applied to fish fitted with

radio transmitters and positioned with triangulation. In our

model, animal movements in the moving phase are mod-

eled with Brownian motion, which is erratic. Animals do

not move erratically at all temporal scales. For example, a

deer’s path sampled second-to-second might have occa-

sional discontinuous direction changes but, mostly, the

path would likely be fairly smooth. The same path sampled

hourly can be quite erratic. It is unnecessary—in fact, in

some sense it is undesirable—to collect positions so
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quickly that they enumerate the trajectory. Determining an

optimal sampling frequency—the lowest frequency that

delivers a pre-speficied accuracy measure—under the

moving–resting process and comparing with that from the

BBMM can be an interesting research topic.

Some extensions of the moving–resting process merit

further research. Movement data are often subject to

observation error, which introduces another source of

variation into the modeling framework. Horne et al. (2007)

attempted to allow Gaussian noise in their BBMM and

derived closed-form expressions for their applications

although their method does not provide a satisfactory

solution either analytically or computationally (Pozdnya-

kov et al. 2013). In a more general framework, a state-

space model can be developed that combines a model for

the observation errors with our model for movement

dynamics (e.g., Jonsen et al. 2005; Patterson et al. 2008).

Such independent additive error will remove the point mass

at zero. Note that, however, it would make the joint process

{X(t), S(t): t C 0} lose its Markov property. The moving–

resting process is very easy to simulate, which facilitates

agent-based models that take into account both internal

state and external factors (e.g., Tang and Bennett 2010).

The memoryless property of the process may be unlikely to

hold in practice, and extending the Brownian motion part

to allow past movement to influence current movement in

some memory-based model would be desirable (Smouse

et al. 2010).
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